Advanced Athermal Telescopes, Phase I

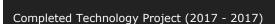
Completed Technology Project (2017 - 2017)

Project Introduction

This proposed innovative athermal telescope design uses advanced lightweight and high-stiffness material of Beryllium-Aluminum (Be-38AI). Peregrine's expertise with Be-38AI, Electroless Nickel and Liquid Interfaced Diffusion (LID) Bonding leveraged by Rochester Institute of Technology's experience with Optical Systems for sounding rocket instruments will provide synergy in this visionary development. Be-38Al seamlessly joined through our proficiency in LID Bonding will produce an athermal telescope that can fully operate in any in-situ environment whether in the laboratory or on-orbit while maintaining alignment. This innovative design and application of advanced fabrication processes like LID Bonding will allow athermal telescopes to be aligned at room temperature and then maintain that alignment and performance as they reach low operating temperatures. A "monolithic" metering structure of Beryllium-Aluminum used within an athermal telescope design would give sounding rocket applications and in-situ telescopes for high altitude balloons and space the ability to align telescopes at ambient temperatures and also have those positional alignments maintained through launches and their entire mission life.

Primary U.S. Work Locations and Key Partners

Advanced Athermal Telescopes, Phase I Briefing Chart Image


Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Advanced Athermal Telescopes, Phase I



Organizations Performing Work	Role	Туре	Location
The Peregrine Falcon	Lead	Industry	Pleasanton,
Corporation	Organization		California
Marshall Space Flight	Supporting	NASA	Huntsville,
Center(MSFC)	Organization	Center	Alabama

Primary U.S. Work Locations	
Alabama	California

Images

Briefing Chart Image Advanced Athermal Telescopes, Phase I Briefing Chart Image (https://techport.nasa.gov/imag e/130895)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

The Peregrine Falcon Corporation

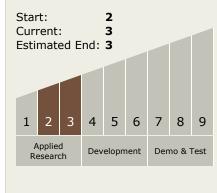
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

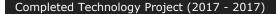
Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Robert Hardesty


Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Advanced Athermal Telescopes, Phase I

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

